
THE SPECTRUM OF PERTURBATIONS AND CONVECTIVE 
INSTABILITY OF A PLANE, HORIZONTAL FLUID 

LAYER WITH PERMEABLE BOUNDARIES 

PMM Vol. 32, No. 2, 1968, pp. 276-281 

D.D. SHVARTSBLAT 
(Pm’) 

(Received October 19, 1967) 

Convective stability of a fluid heated from below is usually studied under the assumption 
that the walls of the cavity are impermeable to the fluid and, that there is no flow of fluid 
across the boundaries. Meanwhile, injection and removal by suction of fluid through the per- 
meable boundaries may exert a decisive influence on the conditions governing the onset of 
convection and serve as one of the means of controlling the convective instability. The 
problem, therefore, represents some interest. 

Below we consider a plane, horizontal, infinite layer of viscous fluid bounded by two 
permeable planes kept at different temperatures. Between the planes. a stationary, traus- 
verse fluid motion with a uniform vertical velocity, takes place. This represents a genera- 
lization of a well known Rayleigh problem on the stability of a plane horizontal fluid layer 
heated from below to the case, when a transverse motion takes place between the permeable 
boundaries of the layer. 

We obtain the deaemental spectra of small, normal, velocity and temperature perturba- 
tioqs and study the convective stability of the fluid. From these decremental spectra we 
obtain the critical Rayleigh numbers, which depend on the Peclet number characterizing the 
rate of injection of the fluid. In particular, we fiid that the transverse flow in the layer 
leads to increase in the values of the critical Rayleigh number, i.e. to au increase in the 
convective stability of the fluid. The Bubnov-Galerkin method is used in computing and a 
large number of the basis functions was utilized. 

1. Let us consider a plane, horizontal, infinite layer of a viscous incompressible fluid, 
bounded by two planes z = fh and heated to different temperatures To (t-axis is directed 
vertically upwards, x- and y-axes are horizontal and the coordinate origin is situated in the 

middle of the layer). We assume that a homogeneous inward flow of fluid takes place with 
the velocity ue through the surface z = - h, and the same type of flow in the outward direc- 

tion, across the surface t = h. In this case we have, within the fluid layer, a steady trans- 
vurae flow of fluid with the following uniform velocity 

v,=o, vy=o, vr=vg 0.i) 

To find the corresponding steady temperature distribution To = T,(z) we shall write the 

equation of heat conductivity in its dimensionless form, taking the semi-width h of the layer 
as the unit distance and 8 as the unit temperature 

aTo’ = To’, voh 
a=- 

% 

Here (I is the Peclet number defined by the semi-width of the layer and the velocity of 
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the steady flow, and x is the coefficient of thermal diffusivity. 

Taking the boundary conditions for the temperature 

To (-1) - i, T,(i) = -i 0.31 

into account we find, from (1.2). the temperature distribution in the layer in the presence 
of a steady transverse flow of fluid 

%=A (ch 5 - en’) 

In the absence of a transverse flow (a = O), (1.4) yields TO = - z, i.e. a linear ttmptra- 

ture distribution in the vertical direction, corresponding to the fluid layer at rest. When the 
velocity of the transverse flow increases, i.e . when Peclet numt;er (I increaaea, the tempcra- 

ture distribution pattern “displaces” towards the upper (a > 5) or the lower (5 < 5) boun- 

dary. At large values of u, a temperature boundary layer of the thickness l/5, appears near 
the boundary. 

2. We shall begin our investigation of the convective stability of a fluid layer by writing 
down the equations governing small perturbations of the steady velocity and temperature 
distribution. Eliminating from the convection equations the preesure end the x- and y- velo- 
city components in the usual manner, we obtain the folIowing equations for the vertical per- 

turbation velocity component vz (x. y, z, C) and for the temperature perturbations T (x, y, I, t) 

Here A and A1 denote the three- and two-dimensional Laplacian respectively; /?, u and 

x ate the respective coefficient8 of thermal expansion, kinematic viscosity and thermal 
diffasivity and g is the acceleration due to gravity. Eqe. (2.1) are written in the dimenaion- 

less form and the units of time, velocity and temperature and denoted by h2/v, g@??h2/v, 
and 8 respectively (the unit of distance was given previously). Three dimensionleoe para- 
meters appearing in (2.1) are: the Rayleigh (R), P randtl Cp) and Peelet (a) numbers. 

Let us consider a normal perturbation of the form 

tzz t= v (z) txp f- ht .j- i (klz + k2y)f T == 0 (z) cxp [- bt + i (klz -J- kzy)] (2.2) 

Here h= A,+ iA 
numbers. Inserting c 

is the complex perturbation decrement, while k, and k, are real wave 

tudes v(z) and (9(z) 
2.2) into (2.1) we obtain the following Eqs. for the perturbation ampli- 

- 1, (v’ - k%) -j- $- (u” - k’v’) = (vIv - 2k%’ .+ kdv) - k% 

_ JJ(j f- 00’ 3 RT,,‘v z= 0” - k?O 
(2.3) 

The folIowing conditions shauld hold at the boundaries of the layer 

y z..: Q’ .zz fj z 5 when t =: rf: 1 (2.4) 

The complex decrement h of the normal perturbations is obtained as an eigenvdue of 
the boundary value problem (2.3) and (2.4), while the perturbation amplitudes v(z) and 6(r) 
are its eigenfunctions. 

3. We shall solve the boundary value problan (2.3) and (2.4) using the approximate Cal- 

erkin method. For this, we shall approximate the solution an follows 

(3.1) 

The amplitudes of the normal velocity and temperatare perturbationa in the fluid at rest 
shall be used as the basis functions u, and 8, Tbeae basis fnnctiona will be solutions of 
the following boundary value problems 

A%, + pnAvn = 0, “,(fi)==u,‘ff1~=0 
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+ Aem + v,e, = 0, e,tst i)=o (3.3) 

Fnncti~r xn and 8, ue #ven in the explicit form in e.g. [I]. Normalixing integrals RI 

and1, am 

+1 

K,= 0,‘dz =I 
s (3.41 
-1 

-i-l 

J1_= 
s *$'"' d* = 
-1 i 

pc [(pg - k@ k th k (1 - k th k) - i], t=ZS 

pt [(p, - k+Gk cth k (i - k cth k) - i], i=2Sf- 1 

Inserting u and 8 from (3.1) into (2.3), multiplying both Eqs. of (2.3) by u, and .I$ respec- 
tively and integrating in z from - 1 to + 1, we obtain a system of linear homogeneous alge- 
braic equations for the coefficients of the expansions (3.1) 

N-l 

2 [ 
% fh -W&*,4- -$ f&,-j + kz x f3,qm=o (i=O,f,2,..., N-f) 

n==0 il 

R ~$.,C,, + M$‘@, W, 

(3.5) 

-PpI)6,,+aE,,]=O (f=O,1,2,. .., M -1) 
tJS-=0 

Matrix elements 3,” and Elm are given by 

i +l s 31, =- 
Ji -f 

vp,,’ dz , 
+1 

s 
@,0,,,’ dt 

-1 
(3.9) 

When both indices have the same sign, B,, = Elm = 0. Otherwise we have 

i *&l l+m+l 

Bh- Ji p,--p*’ B - 2v+~)(~-!-~) 
tm= (--~) a (I- m) 0 + m + 2) (3.7) 

Mntrix elements D,, and Cln are given by 

1 
d-1 

D,,=m.-.- s Ji -_1 
Vie, dt, C,, L=: i 

+1 

s 4 -_1 
To’Q,v, dz (3.8) 

D I= = 0 when i and m differ in sign. If both indices are even. or both odd, we have 

respectively. When both indices are even, we have 

C In = q [t-’ (f - b) + t-1 (b - d)] 2p1 (- 1)“” 

while when botb are odd, we have 

C,, = q [r-l (c - f) + t-1 (d - c)] 2p, (- i)%(‘+‘) 

When D is even and 1 is odd, we have 

Cln=q [r-l(b- j thra)+ t-‘(Jthra- b)] 2cth a pI(- f)‘L(f’l) 

and finally, when n is odd and 1 even, we have 

C,= q fr-l(f th*u - c) +r-l(e-- .‘th’a)] 2cth a p %l 
1 

f- 1) 

The following notation was used in the above formulas 

b=2akthk, c = 2ak cth k, PI = r/r71 (r’+ I) 

ur,’ = p,, - k,, d = (a’ +- pp - un%) cth a, t = d% + 4u 

f=(ar+k’+-p,‘)ctha, r=jr-War, q=--accschan 

saaf 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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The condition of existence of a nontrivial solution of the homogeneous system (3.5) do 

fines the spectrum of characteristic decrements x as functions of the parameters of the prob- 
lem, i.e. of R, a, P numbers and wave number k. The problem of determination of the apec- 

trum is connected with that of obtaining the eigenvaluea x of a normal matrix of the order 
Q = N + M, formed from the coefficients of the system (3.5). The orthogonal step method 
[2] can be used to reduce the matrix to the quasi-triangular form. This method of finding the 
eigeavalues of the matrix was used earlier in the investigation of the spectra of perturba- 
tions of the plane isothermal flows (3 and 4] and of the convective fluid flow,[51. The Gauss 
method was used to obtain the eigenvalues of the matrix and all computations were perfor- 

med on the “Minsk - 2” computer. 

4. An approximation containing 20 basis functions (N = M = 10) was used to obtain the 
decrements for (I = 0 and a = 3; for a = 5, 24 functions (N = M = 12) were used. These app- 
roximations yield 10-12 lower levels of the decremental spectrum over the following range of 
of the Rayleigh numbers - 2000 < R < 4000 with sufficient accuracy. 

Pig. 1 Fig. 2 

The convergence of the series (3.1) becomes weaker with increasing R and a. In order 
to estimate the rate of convergence, we calculated the decrements using a varying number 
of the basis functions (up to 28). For the Peclet number a = 3, the results obtained with the 
help of 20 and 24 basis functions, practically coincide over the range of values of R quoted 
above, while for a = 5 the approximations containing 24 and 28 basis functions also yielded 
comparable results. 

When the layer was not heated (R = 0). then the approximate values of the decrements 
computed for a = 3 and 5, practically coincided with the values which were obtained for 
this particular case from the exact characteristic relations [6 and 71. 

Fig. 3 

Let us consider the results obtained. Figs. 

1 to 3 show, as an illustration, the relation 
between the real part hr of the perturbation 
decrement with the wave number k = 2 and the 
Rayleigh number, for the following three val- 
ues of the Peclet number: a = 0, 3 and 5, with 

P = 1. Positive values of R correspond to the 
heating from below, negative - to the heating 
from above. 

Fig. 1 shows the lower levels of the decre- 
mental spectrum for a = 0 (no transverse mo- 
tion: - the Rayleigh problem). In this case we 
have, for R = 0, two types of decaying pertur- 
bations present in the flow: iaotbermic whose 
spectrum is determined by the boundary value 
problem (3.2) (Cc-levela) and noniaotbermic 
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(boundary value problem (3.31, Y - levels). 

In the region R > 0 all decrements are reel (monotonous parturbetions) and the spectrum 

admits only simple intersections such, that the decrements remain real on both sides of the 

intersection point. Some decrements become negative with increasing R, i.e. monotonous 

instability takes place. 

In the region R < 0 real unlike decrements merge, producing complex conjugate pairs, 

i.e. we have the case of oscillatory perturbations. At the same time the real parts of all 

decrements remain positive snd all perturbations decay. 

Figs. 2 and 3 show the decremental spectra in the presence of a transverse fluid flow. 

We eee that injection of the fluid leads to the change in the appearance of the spectrum. 

Simple intersections disappear at arbitrarily small values of o and, either two real levels 

merge into a complex conjugate pair (on increasing the Rayleigh number these pairs aepa- 

rate back into real levels, see Fig. 41, or real levels diverge without intersection..Witb 

increasing a the points of intersection of the decrement lines with the R-axis are displaced 

into the region of high values of R, and this indicates that the inward flow opposes the ten- 

dency towards convective instability (*I. 

In the region R < 0, increase in a is accompauied by displacement of the points, at which 

the real levels merge towards the high absolute values of R. 
We note that it follows directly from (2.31 that the change in the sign of a, i.e. reversing 

the direction of the flow vo does not alter the decremental spectra. The amplitudes however, 

are changed thus: v (2) + v (-- z) and 6)(z) -+ 6 f- 2). It f o I1 ows, that, when o > 0, the pertur- 

bations are situated near the upper boundary, while when a < 0 - near the lower boundary. 

A, 

a=3 I d 

~ -xi R 
0 -uu 80 fZ0 

:K, - 
--- 

8UD0 

Fig. 4 Fig. 5 

When investigating the convective instability of a plane Iayer with permeable hound&es 

we find, that the lowest level responsible for the onset of instability merits most attention. 

Numericaf data obtained in computing the decremental spectra allow us to construct (for 
fixed o and PI a relationship between the critical Rayleigh numbers and the perturbation 
wave number k, i.e. the neutral curve of monotonous perturbations. This curve has a minimum 

at k = k*; we shall denote the corresponding critical Rayleigh number defining the boundary 

of the monotonous instability by R+. 

The data available from the computation of spectra and of the neutral curves make it 

possible to find the relationship between R +, k+, aud the Peclet number. Fig. 5 shows these 

+) Similar effect of stabifizing the Rayleigh type instability occurs, when one of the planes 
bounding the horizontal fluid layer, moves (see fgl,. 
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relationships for P = 1. Solid lines anuw the results obtained using 16 basis functions, and 

broken lines - using 8 basis functions. 
We see that the transverse flow has a strong influence on the convective stability of the 

fluid increasing it appreciably. Increase 
in the values of R+ and k* as the Peclet 
number incraaaea, is physically underatsn- 
dable. Indeed, the transverse fluid flow 
displaces the paturbatfons towards the 
boundary and they beaoms localized within 

a region whose height decreases as the 
Peclet number increases. This, of course, 
reaulta in the value of R, increasing to- 

-3 gether with that of the Peclet number. 
Decrease in the vertical dimension of 

the region of actual formation of perturba- 

Fig. 6 tiona, is accompanied by s decrease i,n the 

wavelength of the moat dangerous pertur 
bationa, i.e. by an increase in the value of k+. 

Fig. 6 and 7 show the streamlines of characteristic perturbations whose wave numbers 
arek=2,k2= 0 when a = 3 sod P ;1 1. 

The flow pattern shown, occurs over 
the interval of the r-coordinate equal 

,J to the perturbation wsvelength. 

Fig. 6 corresponds to the decaying 
monotonous perturbations with ths dec- 

Fig. 7 

16.000). 
ponding veluea of h are 14.176 and 

Fig. 7 shows the streamlines of decaying oscillatory perturbations with the decrement 
h= 20.257 + 9.4376i for a pair of merging levels po and us at R = - 1200. 

The author thsnka E.M. Zhukhovitakii for proposing the problem and subsequent guidance 
G.Z. Gerahuni for helpful criticism and R.V. Birikh for help. 
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